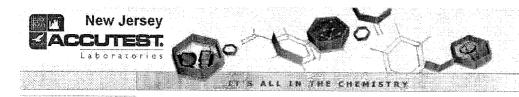
PRETREATMENT MONITORING REPORT

				THE NO)V /	2008	and I
NAME:SANDVIK COROM	IANT MANUF	ACTURING	***			Care Company	
MAILING ADDRESS: 1702 N	NEVINS ROAD	FAIRLAWN, NJ 07410		MOUC.			
FACILITY LOCATION: 1702	NEVINS ROA	D FAIRLAWN, NJ 0741	0				
CATEGORY & SUBPART:U	NKNOWN		OUTLET #	: _ 1			
CONTACT OFFICIAL: ALBI	ERT MIPS		TELEPHO?	NE: 201-794	-5106		
NEW CUSTOMER ID / OUTLE MONITORING PERIO Start O O O O O O MO DAY YR MO		O2 - 1 OLD OUTLET E Regulated Flow-gal/day Total Flow-gal/day	Average	<u>Maxi</u> , = 0 m	mum GAL AX FL	<u>(</u>	Inp
Method Used:				Ť.			
Production Rate (if applicable)							

PARAMETER		MASS O	R CONCENTE	RATION	# OF	SAMPLE TYPE
		MON AVG	MAXIMUM	UNITS	SAMPLES	COMP/GRAB
IOCHEMICAL OX	Sample Measurement		1<2.00	MG/L	J	COMP
	Permit Requirement	0		MG/L		WIT
CADMIUM	Sample Measurement		< 0.003	MG/L	1	COMP
	Permit Requirement	0.19		MG/L		COMP
COPPER	Sample Measurement		<0.00	MG/L	1	COMP
	Permit Requirement	3.02	VI	MG/L		comp
LEAD A	Sample Measurement 18	192027	\$0.003	MGIL	1	comp
	Permit Requirement	0.54		MG/L		comp
MERCURY	Sample Measurement	Xey	<0.002	MGIL	1	COMP
16	Permit Requirement	0,080		MG/L		COMP
MON AVG MAXIMUM UNITS SAMPLES	1	COMP				
100	Permit Requirement	5.9				COMI
ZINC	Sample Measurement	Service Vo	<0/020	MGIL		COLONID
100	Permit Requirement	1.670				COMP
NON-POLAR MATE			< 5.2	MGIL	1	(10 A B
	Permit Requirement	21-15	100	MG/L		GRAB
TOTAL TOXIC OR	Sample Measurement		0.162	MG/L	1	CONO
	Permit Requirement	2.13			,	GRAB
	Sample Measurement		1			
	Permit Requirement			1		
	Sample Measurement					
	Permit Requirement					
	Sample Measurement					
			٠,			1
						VX
			1			X
	Sample Measurement					
	Permit Requirement					, _ 3

PVSC FORM MR-1 REV: 4 6/87 P1


CONTR	1	200258
2008	A	VOM

PRETREATMENT MONITORING REPORT

Certification of Non-Use if applicable (use additional sheets):	
Compliance on the state of the s	
Compliance or non compliance statement with compliance schedule (use additional sheets if necessary) for	every
parameter used: SAMDVIK IS IN COMPLIANCE	
$COMO(C_{\bullet})$	
Explain Method for preserving samples: SAMPLES ARE PRESERVED	IN
NITRIC ACID AT PH NO LESS THAN 2.0	
	i .
Based on my inquiry of the person or persons who manage the system, or those persons directly response the information, the information submitted is, to the best of my knowledge and belief, true, accurate a am aware that there are significant penalties for submitting false information, including the possibilitine and imprisonment for knowing violations. 403.6(a)(2)(ii) revised by 53 FR 40610, October 17, 1988	nd complete.
403.0(a)(2)(ll) revised by 33 FR 40010, October 17, 1988	
All 1	
Signature of Principal	
Executive or Authorized Agent	
ALBERT MIPS	
FACILITIES MANAGER	
Type Name and Title	
11/5/08	
Date	

PVSC FORM MR-1 REV: 5 3/91 P 2

e-Hardcopy 2.0 Automated Report

10/24/08

Technical Report for

Sandvik Inc.

Monthly PVSC Permit, Fairlawn, NJ

Accutest Job Number: JA2127

Sampling Date: 10/02/08

Report to:

Sandvik Coromant Manufacturing

albert.mips@sandvik.com

ATTN: Albert Mips

Total number of pages in report: 13

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Conference and/or state specific certification programs as applicable.

David N. Speis VP Ops, Laboratory Director

Client Service contact: Nadine Yakes 732-329-0200

Certifications: NJ(12129), NY(10983), CA, CT, DE, FL, IL, IN, KS, KY, LA, MA, MD, MI, MT, NC, PA, RI, SC, TN, VA, WV

This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories. Test results relate only to samples analyzed.

New Jersey • 2235 Route 130 • Dayton, NJ 08810 • tel: 732-329-0200 • fax: 732-329-3499 • http://www.accutest.com

Note: This report is password protected to disallow document modification or assembly. To obtain a version that can be unlocked, contact your client service representative.

Table of Contents

Sections:

-1-	
Section 1: Sample Summary	3
Section 2: Case Narrative/Conformance Summary	
Section 3: Sample Results	6
3.1: JA2127-1: BASEMENT SUMP 24HR COMPOSITE	
3.2: JA2127-2: BASEMENT SUMP GRAB	9
Section 4: Misc. Forms	12
4.1: Chain of Custody	

__

Accutest LabLink@11:01 24-Oct-2008

Sample Summary

Sandvik Inc.

Monthly PVSC Permit, Fairlawn, NJ

Job No:

JA2127

Sample	Collected		1200	Matrix	Client
Number	Date	Time By	Received	Code Type	Sample ID
JA2127-1	10/02/08	14:02 RS	10/02/08	AQ Water	BASEMENT SUMP 24HR COMPOSITE
JA2127-2	10/02/08	14:07 RS	10/02/08	AQ Water	BASEMENT SUMP GRAB

CASE NARRATIVE / CONFORMANCE SUMMARY

Client: Sandvik Inc.

Job No

JA2127

Site:

Monthly PVSC Permit, Fairlawn, NJ

Report Date

10/24/2008 10:59:35 A

On 10/02/2008, 2 Sample(s), 0 Trip Blank(s) and 0 Field Blank(s) were received at Accutest Laboratories at a temperature of 4.4 C. Samples were intact and properly preserved, unless noted below. An Accutest Job Number of JA2127 was assigned to the project. Laboratory sample ID, client sample ID and dates of sample collection are detailed in the report's Results Summary Section.

Specified quality control criteria were achieved for this job except as noted below. For more information, please refer to the analytical results and QC summary pages.

Volatiles by GCMS By Method EPA 624

Matrix: AQ

Batch ID: VT4825

- All samples were analyzed within the recommended method holding time.
- Sample(s) JA2421-5MS, JA2421-5MSD, JA2421-5MSMSD were used as the QC samples indicated.
- All method blanks for this batch meet method specific criteria.
- Matrix Spike Recovery(s) for 2-Chloroethyl vinyl ether are outside control limits. Outside control limits due to acid preservation.
- Matrix Spike Duplicate Recovery(s) for 2-Chloroethyl vinyl ether are outside control limits. Outside control limits due to acid preservation.

Metals By Method EPA 200.7

Matrix: AQ

Batch ID: MP45693

- * All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JA2665-11SDL, JA2665-11MS, JA2665-11MSD, JA2665-11SDL were used as the QC samples for metals.
- RPD(s) for Serial Dilution for Cadmium, Copper, Nickel, Zinc are outside control limits. Percent difference acceptable due to low initial sample concentration (< 50 times IDL).

Metals By Method EPA 245.1

Matrix: AQ

Batch ID: MP45728

- Management All samples were analyzed within the recommended method holding time.
- Marks for this batch meet method specific criteria.
- Sample(s) JA2787-1MS, JA2787-1MSD were used as the QC samples for metals.

Wet Chemistry By Method EPA 1664A

Matrix: AQ

Batch ID: GP46425

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JA2665-11DUP, JA2665-12MS were used as the QC samples for HEM Petroleum Hydrocarbons.
- Matrix Spike Recovery(s) for HEM Petroleum Hydrocarbons are outside control limits. Spike recovery indicates possible matrix interference.

Friday, October 24, 2008

Page 1 of 2

Wet Chemistry By Method SM20 2540D

Matrix: AQ

Batch ID: GN19598

- ** All samples were analyzed within the recommended method holding time.
- ** All method blanks for this batch meet method specific criteria.
- Sample(s) JA2211-1DUP were used as the QC samples for Solids, Total Suspended.

Wet Chemistry By Method SM20 5210B

Matrix: AQ

Batch ID: GP46148

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JA2134-1DUP were used as the QC samples for BOD, 5 Day.

Field Data By Method SM20 4500HB

Matrix: AQ

Batch ID: R75860

The data for SM20 4500H B meets quality control requirements.

Accutest certifies that data reported for samples received, listed on the associated custody chain or analytical task order, were produced to specifications meeting Accutest's Quality System precision, accuracy and completeness objectives except as noted.

Estimated non-standard method measurement uncertainty data is available on request, based on quality control bias and implicit for standard methods. Acceptable uncertainty requires tested parameter quality control data to meet method criteria.

Accutest Laboratories is not responsible for data quality assumptions if partial reports are used and recommends that this report be used in its entirety. Data release is authorized by Accutest Laboratories indicated via signature on the report cover

Friday, October 24, 2008

Page 2 of 2

Section 3

Sample Results			
Report of Analys	is		

Report of Analysis

Page 1 of 1

Client Sample ID: BASEMENT SUMP 24HR COMPOSITE

Lab Sample ID: Matrix:

JA2127-1

AQ - Water

Date Sampled: 10/02/08

Date Received: 10/02/08 Percent Solids: n/a

Project:

Monthly PVSC Permit, Fairlawn, NJ

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Cadmium	< 3.0	3.0	ug/l	1	10/17/08	10/20/08 GT	EPA 200.7 ¹	EPA 200.7 ³
Copper	<10	10	ug/l	1	10/17/08	10/20/08 GT	EPA 200.7 ¹	EPA 200.7 ³
Lead	< 3.0	3.0	ug/l	1	10/17/08	10/20/08 GT	EPA 200.7 ¹	EPA 200.7 ³
Mercury	< 0.20	0.20	ug/l	1	10/20/08	10/20/08 JW	EPA 245.1 ²	EPA 245.1 ⁴
Nickel	< 10	10	ug/l	1	10/17/08	10/20/08 GT	EPA 200.7 ¹	EPA 200.7 ³
Zinc	< 20	20	ug/l	1	10/17/08	10/20/08 GT	EPA 200.7 ¹	EPA 200.7 ³

(1) Instrument QC Batch: MA21631 (2) Instrument QC Batch: MA21636 (3) Prep QC Batch: MP45693

(4) Prep QC Batch: MP45728

RL = Reporting Limit

Report of Analysis

Page 1 of 2

Client Sample ID: BASEMENT SUMP GRAB

Lab Sample ID: Matrix:

JA2127-2

AQ - Water

EPA 624

Date Sampled: Date Received:

10/02/08 10/02/08

Percent Solids: n/a

Method: Project:

Monthly PVSC Permit, Fairlawn, NJ

Analytical Batch

Run #1

File ID T125423.D DF 1

Analyzed 10/11/08

By **YCB** Prep Date n/a

Prep Batch n/a

VT4825

Run #2

Purge Volume

Run #1

5.0 ml

Run #2

VOA TVO List

CAS No. Co	mpound	Result	RL	MDL	Units	Q
107-02-8 Ac	rolein	ND	50	2.0	ug/l	
107-13-1 Ac	rylonitrile	ND	10	0.85	ug/l	
542-88-1 Bis	(chloromethyl)ether	IND			ug/l	
71-43-2 Ber	nzene	ND	1.0	0.12	ug/l	
75-27-4 Bro	omodichloromethane	ND	1.0	0.13	ug/l	
75-25-2 Bro	omoform	ND	1.0	0.19	ug/l	
74-83-9 Bro	omomethane	ND	1.0	0.18	ug/l	
56-23-5 Ca	rbon tetrachloride	2.8	1.0	0.099	ug/l	
108-90-7 Ch	lorobenzene	ND	1.0	0.13	ug/l	162 UG/L x 1000 UG
75-00-3 Ch	loroethane	ND	1.0	0.20	ug/l	162 UGL IMG
110-75-8 2-0	Chloroethyl vinyl ether	ND	5.0	0.96	ug/l	10x
67-66-3 Ch	loroform	5.6	1.0	0.094	ug/l	L 1000 UL
74-87-3 Ch	loromethane	ND	1.0	0.17	ug/l	
124-48-1 Dil	bromochloromethane	ND	1.0	0.11	ug/l	- (0.16) M9/
106-93-4 1,2	2-Dibromoethane	ND	1.0	0.17	ug/l	= 0.162 mg//
95-50-1 1,2	2-Dichlorobenzene	ND	1.0	0.14	ug/l	- 0.10 x 0//_
541-73-1 1,3	3-Dichlorobenzene	ND	1.0	0.18	ug/l	7
106-46-7 1,4	l-Dichlorobenzene	ND	1.0	0.21	ug/l	
75-71-8 Die	chlorodifluoromethane	ND	2.0	0.91	ug/l	
75-34-3 1,1	-Dichloroethane	4.0	1.0	0.10	ug/l	
107-06-2 1,2	2-Dichloroethane	ND	1.0	0.31	ug/l	
75-35-4 1,1	-Dichloroethene	2.9	1.0	0.17	ug/l	
156-59-2 cis-	-1,2-Dichloroethene	9.9	1.0	0.15	ug/l	
156-60-5 tra	ns-1,2-Dichloroethene	ND	1.0	0.18	ug/l	
78-87-5 1,2	2-Dichloropropane	ND	1.0	0.33	ug/l	
10061-01-5 cis-	-1,3-Dichloropropene	ND	1.0	0.16	ug/l	
10061-02-6 tra	ns-1,3-Dichloropropene	ND	1.0	0.21	ug/l	
123-91-1 1,4	l-Dioxane	ND	130	55	ug/l	
100-41-4 Eth	rylbenzene	ND	1.0	0.23	ug/l	
	rylenimine	IND			ug/l	
75-09-2 Me	ethylene chloride	ND	1.0	0.12	ug/l	
79-34-5 1,1	,2,2-Tetrachloroethane	ND	1.0	0.10	ug/l	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

Page 2 of 2

Client Sample ID: BASEMENT SUMP GRAB

Lab Sample ID:

JA2127-2

AQ - Water

Date Sampled:

10/02/08

Matrix:

Date Received:

10/02/08

Method:

EPA 624

Percent Solids: n/a

Project:

Monthly PVSC Permit, Fairlawn, NJ

VOA TVO List

CAS No.	Compound	Result	RL	MDL	Units	Q
127-18-4	Tetrachloroethene	125	1.0	0.58	ug/l	
108-88-3	Toluene	ND	1.0	0.20	ug/l	
71-55-6	1,1,1-Trichloroethane	2.5	1.0	0.11	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.15	ug/l	
79-01-6	Trichloroethene	10	1.0	0.45	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.44	ug/l	
75-01-4	Vinyl chloride	ND .	2.0	0.16	ug/l	
1330-20-7	Xylenes (total)	ND	1.0	0.15	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
17060-07-0	1,2-Dichloroethane-D4 (SUR)	112%		62-1	39%	
2037-26-5	Toluene-D8 (SUR)	100%		85-1	20%	
460-00-4	4-Bromofluorobenzene (SUR)	98%		74-1	18%	

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 1

Lab Sample ID:

Client Sample ID: BASEMENT SUMP GRAB

Matrix:

JA2127-2 AQ - Water

HEM Petroleum Hydrocarbons < 5.2 5.2

Date Sampled:

10/02/08

Date Received: 10/02/08

Percent Solids: n/a

Project:

Analyte

Monthly PVSC Permit, Fairlawn, NJ

General Chemistry

Result

RL Units DF

1

1

Analyzed 10/22/08

MG EPA 1664A

Method

By

Field Parameters

pH (Field)

6.64

su

mg/l

10/02/08 14:07 RMS SM20 4500H B

RL = Reporting Limit

Section 4

4

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

• Chain of Custody

November 5, 2008

Mr. Andy Caltagirone Passaic Valley Sewage Commissioners 600 Wilson Ave. Newark, NJ 07105

Re: Monitoring report October 2008. Permit Number: 08630002

Dear Mr. Andy Caltagirone,

Please find enclosed our sewage discharge monthly monitoring reports for the period of 10/1/08 to 10/31/08, during this period there was no discharge to PVSC.

For any additional information regarding this or any other matter, I can be reached at 201-794-5106 or by E-mail at *Albert.Mips@Sandvik.com*

Sincerely, Albert W. Mips

Alm W. Ahi

Facilities Engineering Manager

SANDVIK COMPANY 1702 Nevins Road P.O. Box 428 Fair Lawn, NJ 07410-0428

GROUND WATER SEWAGE RECORDS 2008

		,			R SEWAGE R				•
PERIOD	DATE	L	METERED	_					VER (GALLONS)
=: ,,,,,,,,		MET	ER-A(05000626)			_			AIN (GALLONS)
l l			34,686,000		8,415,000		554,000	В	2,331,000
JAN.	1/31		34,132,000		6,084,000				
		A=	554,000	B=	2,331,000	Α	554,000	В	2,331,000
					9,922,000		1,416,000	В	1,507,000
FEB.	2/29		34,686,000		8,415,000				
		A=	1,416,000	B=	1,507,000	Α	1,416,000	В	1,507,000
					10,843,000	Α	3,147,000	В	921,000
MAR.	3/31				9,922,000				
		A=	3,147,000	B=	921,000	Α	3,147,000	В	921,000
			40,949,000		12,698,000	Α	1,700,000	В	1,855,000
APR.	4/30		39,249,000	_	10,843,000				
	36,102,000 34,686,000 A= 1,416,000 B= 39,249,000 A= 3,147,000 B= 40,949,000 A= 1,700,000 B= 42,980,000 A= 2,031,000 B= 44,835,000 A= 1,855,000 B= 44,835,000 A= 1,855,000 B= 44,835,000 A= 1,855,000 B= 45,691,000 A= 856,000 B= 46,143,000 A= 452,000 B= 46,182,000 B=		1,855,000	Α	1,700,000	В	1,855,000		
					13,938,000	A	2,031,000	В	1,240,000
MAY	5/31		40,949,000		12,698,000				
		A=	2,031,000	B=	1,240,000	Α	2,031,000	В	1,240,000
					15,181,000	Α	1,855,000	В	1,243,000
JUNE	6/30				13,938,000				
		A=	1,855,000	B=	1,243,000	Α	1,855,000	В	1,243,000
					17,009,000	Α	856,000	В	1,828,000
JULY	7/31				15,181,000				
		A=	856,000	B≂	1,828,000	Α	856,000	В	1,828,000
			46,143,000		19,205,000	Α	452,000	В	2,196,000
AUG.	8/31				17,009,000				
		A=	452,000	B=	2,196,000	Α	452,000	В	2,196,000
			46,182,000		21,369,000	Α	39,000	В	2,164,000
SEPT.	9/30		46,143,000		19,205,000				
		A=	39,000	B=	2,164,000	Α	39,000	В	2,164,000
			46,182,000		23,766,000	Α	0	В	2,317,000
ост.	10/31		46,182,000		21,449,000				
		A=	. 0	B=	2,317,000	Α	0	В	2,317,000
						Α	0	В	0
NOV.	1.1/30								
		A= ·		B=		Α	0	В	0
DEC.	12/31					Α	0	В	0
DLC.	12131	A=	·.	B=		A	0	В	0
VTD TO	TAI						40.00	_	
YTD TO	I AL					Α	12,050,000	В	17,602,000

		V.N	Fre	sh Ponc	is Corp	orate	Villa	ge, B	ODY	•		Accutest	Job#:	-		É
ACCUTE	ST.		223	5 Route	e 130, I	Dayto	n. N.	J 08	310					J	A-212	7
			908	i-329-U.	200 F	AX:	908-:	329-3	499/3480			Accutest	Quote #:	NV41200	0.070	
Client Information			Facili	ty Infor	mation		See W		A. Vev	7	120	Апа	ytical Infor	NY4/200 mation	8-278	
Sandvick Mnf.		Station	Sandvi							BOD	Cd, Cu.		T	V624	PHC	pHf
me 1702 Nevins Road		Locatin	ocatin Monthly PVSC Permit							TSS	Pb, Hg, Ni, Zn,			TVO	1664	
Fairlawn, N.J.	O7410	Project #	roiset# Egirlaum N I						Ì		l]
y. State Mr. Albert Mips	Zip	. Toject #	Project# Fairlawn, N.J.						1 .							
nd Report to: one #: <u>(201)</u> 794-5106		FAX#:	4X #:]	·						
		Collection	777]	Γ	Pre	serv	/atior	<u> </u>	i				1]	
Field ID / Point of Collection	Date	Time	Sampled By	Matrix	# of bottles	HCL NA2S3	Hno3	H2So4								
Basement Sump	10-2-08	1402	RS	ww	3		x	x		Х	Х					
24 hr Composite							П	Т						1		
time: 1400 to 1400						П	П			1		l		†		
date: #0-1-08-10-2-08						П	П	\top					 	 		
							П	1								
Basement Sump	10-2-08	1407	RS	ww	5	x	╁	+	 				-	X	х	Х
Grab		•														
		<u> </u>				+	H	+					-	ļ		
Turnaround Information			Data Deli	verable i	nformat	on		(a)		THE STREET		Comme	its / Remarks	<u> </u>		Vietalys
21 Day Standard	Approved	Ву:	X NJ Redu	ced	1	c	omm	ercial	-A- / 6	102.		·				re within the American Springer.
] 14 Days RUSH			NJ Full		[c	omm	ercial		IMET 21,		Samples v	vere collect	ed in accord	lance	
7 Days EMERGENCY			FULL CL	P	[s	tate F	orms		NC4Z,		Samp	ang sops to	Accuract Plat r water and/	or or	
Other			Disk Del	iverable					1	2011	7		solids soin	npling		
Day Turnaround Hardcopy, Emergen ata unless previously approved.			Other (S						\	. 1				*********	······································	
de.or.oo of certificat	ustody must Date Time:	be documente	Received By:	time sar	nples c	nange	poss	esion	, including	courier delive	егу.	Date Time:		Received By:	7	
RS adarangem	10-2-08	3 1630	1	N	lefu	u	2	·	•			oate IIme:		Received By:		
Plinquished by Sampler:	Date Time:		Received By:				R 4	elinqu	shed By:			Date Time:	"	Received By:		
elinquished by Sampler:	Date Time:		Received By:				- 4	eal#	22	Intac	Preserve whe	re applicable		On Ice	Temper	ature
			5													

JA2127: Chain of Custody Page 1 of 1

NOJE 1/05/2008 11	:55 MANUFACTURIN	G → 919733444	875			NO.212
	PRETRI	ATMENT MON	ITORING REI	PORT	NOV	5 2008
NAME: SANDVI	K COROMANT MANUFAC	TURING		T C		
	S: 1702 NEVINS ROAD		7410			1
	ON: 1702 NEVINS ROAD	FAIRLAWN, 193	01710	m pm 4. I		
CATEGORY & SUB	PART: UNKNOWN			11751 H: 1		
CONTACT OFFICIA	L: ALBERT MIPS		TE:	LEPHONE: _2	01-794-5106	
NEW CUSTOMER I	D/OUTLET ID: 08630002		LET DESIGNA Averag	<u>e</u>	<u>Maximum</u>	
Ştart	End	Regulated Flow-ga	6	۔ فی	O MACH	FL 01.3
		Regulated Flow-ga	auday <u>Ux</u>	10/5-	U JUBA	PEON
10 01 08	10 31 08	Total Flow-gal/day	y <u></u>		<u> </u>	
MO DAY YR	MO DAY YR	//-		/		
Method Used:		_//_				
		. /				
		1		/		
Production Rate (if a	pplicable)		/	\ /	•	
DADAL STORM		MASS O	R CONCENTR	ATION	# OF	SAMPLE TYPE
PARAMETER		MON AVG	MUMIXAM	UNITS	SAMPLES	COMP/GRAB
IOCHEMICAL OX	Sample Measurement		< 2.00	MG/L		COMP
	Permit Requirement	0	<0.003	MG/L MG/L		CO104.0
CADMIUM	Sample Measurement Permit Requirement	0,19	10.000	MG/L		COMP
COPPER	Sample Measurement		K0.010	MG/L		COMP
	Permit Requirement	3.02	V 2001	MG/L		
LEAD	Sample Measurement	1 2 2	20003	MG/L		comp
	Permit Requirement Sample Measurement	0.54	20.002	MGIL	1	COMP
MERCURY	Permit Requirement	0.080		MG/L		
NICKEL	Sample Measurement		ZO.010	MGIL		COMP
	Permit Requirement	5.9	<0.020	MG/L MG/L	- 7	C = 10 = 10
ZINC	Sample Measurement Permit Requirement	1.67	~ U. U.	MG/L		comp
NON-POLAR MATE	Sample Measurement	1 7 7 7 7	< 5.2	MGIL	T_{-}	GRAB
, one open warre	Permit Requirement		100			
TOTAL TOXIC OR	Sample Measurement		0.162	MG-1L		GRAB
	Permit Requirement	2.13		MG/L		
-	Sample Measurement Permit Requirement					
	Sample Measurement					4
	Permit Requirement					A
	Sample Measurement					1/11/
	Permit Requirement Sample Measurement					
1	Permit Requirement	_				
	Sample Measurement					W TH
	Permit Requirement					
ļ .	Sample Measurement Permit Requirement	<u> </u>	 			
1	Letitut Vedanement					

MANUFACTURING → 919733444876

NO.212 **D**05

PRETREATMENT MONITORING REPORT	NOV	5 2008	
ertification of Non-Use if applicable (use additional sheets):	\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	and the second second	er warde.
		- (\supseteq
ompliance or non compliance statement with compliance schedule (use additional sheets if		ery	
arameter used: SANDVIK IS IN COMPL	IANCE		
			 -
	. 0 0 0	IN	
explain Method for preserving samples: SAMPLES ARE PRESE	KUED_	110	
NITRIC ACID AT PH NO LESS THAN	2.0		-
ccordance with a system designed to assure that qualified personnel properly gather a Based on my inquiry of the person or persons who manage the system, or those persons he information, the information submitted is, to the best of my knowledge and belief, t	directly respon	nsible for gat	
am aware that there are significant penalties for submitting false information, includ			
fine and imprisonment for knowing violations.			
	•		
403.6(a)(2)(ii) revised by 53 FR 40610, October 17, 1988		•	•
Alu 1			•
Signature of Principal			
Executive or Authorized Agent			
ALBERT MIRS			
FACILITIES MANAGER			
Type Name and Title			
11/5/08			

Date

11:55

MANUFACTURING → 919733444876

NO.212

DØ8

Accutest LabLink@11:01 24-Oct-2008

Report of Analysis

Page 1 of 1

Client Sample ID: BASEMENT SUMP 24HR COMPOSITE

Lab Sample ID: Metrix:

JA2127-1

AQ - Water

Date Sampled: 10/02/08

Date Received: 10/02/08

Percent Solids: 11/2

Project:

Monthly PVSC Permit, Fairlawn, NJ

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Cadmium Copper Lead Mercury Nickel Zinc	< 3.0 < 10 < 3.0 < 0.20 < 10 < 20	3.0 10 3.0 0.20 10 20	ng/l ng/l ng/l ng/l ng/l	1 1 1 1 1	10/20/08 10/17/08	10/20/08 GT 10/20/08 GT 10/20/08 JW 10/20/08 GT	EPA 200.7 ¹ EPA 200.7 ¹ EPA 200.7 ¹ EPA 245.1 ² EPA 200.7 ¹ EPA 200.7 ¹	EPA 200.7 ³ EPA 200.7 ³ EPA 200.7 ³ EPA 245.1 ⁴ EPA 200.7 ³

(1) Instrument QC Batch: MA21631 (2) Instrument QC Batch: MA21636 (3) Prep QC Batch: MP45693

(4) Prep QC Batch: MP45728

RL = Reporting Limit

Report of Analysis

Page 1 of 2

Client Sample ID: BASEMENT SUMP GRAB Lab Sample ID:

JA2127-2

Date Sampled: 10/02/08 Date Received: 10/02/08

Matrix: Method: AQ - Water

Percent Solids: n/a

EPA 624

Project:

Monthly PVSC Permit, Fairlawn, NJ

DF

1

Analytical Batch Prep Batch

Run #1

File ID T125423.D Analyzed 10/11/08

YCB

Ву

Prep Date n/a

VT4825 n/a

Run #2

Purge Volume

5.0 ml Run #1

Run #2

VOA TVO List

107-02-8	CAS No.	Compound	Result	RL	MDL	Units	Q
107-13-1	107-02-8	Acrolein	ND	50			
108-98-1 Bis(chloromethyl)ether ND 1.0 0.12 ug/l			NĎ	10	0.85		
T1-43-2 Benzene			IND				
T5-27-4 Bromodichloromethane ND 1.0 0.13 ug/l			ND	1.0	0.12		
T5-25-2 Bromoform ND 1.0 0.18 ug/l			ND	1.0	0.13		
Recommendation			ND	1.0			
Carbon tetrachloride Carbon tetrachloride Carbon tetrachloride Carbon tetrachloride Carbon tetrachloride Carbon tetrachloride ND 1.0 0.13 ug/l			ND	1.0			
T4-87-3 Chloromethane ND 1.0 0.11 ug/l			2.8	1.0	0.099	ug/I	•
T4-87-3 Chloromethane ND 1.0 0.11 ug/l	-	•	ND	1.0	0.13	ug/l	10/1/ 1ma
T4-87-3 Chloromethane ND 1.0 0.11 ug/l	- -		ND	1.0	0.20	ug/l	162001= - 1119
T4-87-3 Chloromethane ND 1.0 0.11 ug/l			ND	5.0	0.96	ug/l	1 2 1000.44
T4-87-3 Chloromethane ND 1.0 0.11 ug/l				1.0	0,094	ug/l	L 1000 UC
541-73-1 1,3-Dichlorobenzene ND 1.0 0.18 ug/l 106-46-7 1,4-Dichlorobenzene ND 1.0 0.21 ug/l 75-71-8 Dichlorodifluoromethane ND 2.0 0.91 ug/l 75-34-3 1,1-Dichloroethane 4.0 1.0 0.10 ug/l 107-06-2 1,2-Dichloroethane ND 1.0 0.31 ug/l 75-35-4 1,1-Dichloroethene 2.9 1.0 0.17 ug/l 156-59-2 cis-1,2-Dichloroethene 9.9 1.0 0.15 ug/l 156-60-5 trans-1,2-Dichloroethene ND 1.0 0.18 ug/l 78-87-5 1,2-Dichloropropane ND 1.0 0.33 ug/l 10061-01-5 cis-1,3-Dichloropropene ND 1.0 0.16 ug/l 10061-02-6 trans-1,3-Dichloropropene ND 1.0 0.21 ug/l 123-91-1 1,4-Dioxane ND 130 55 ug/l 100-41-4 Ethylenimine ND 1.0 0.23 ug/l 151-56-4 Ethylenimine IND 1.0 0.12 ug/l 75-09-2 Methylene chloride ND 1.0 0.12 ug/l				1.0	0.17	ug/l	
541-73-1 1,3-Dichlorobenzene ND 1.0 0.18 ug/l 106-46-7 1,4-Dichlorobenzene ND 1.0 0.21 ug/l 75-71-8 Dichlorodifluoromethane ND 2.0 0.91 ug/l 75-34-3 1,1-Dichloroethane 4.0 1.0 0.10 ug/l 107-06-2 1,2-Dichloroethane ND 1.0 0.31 ug/l 75-35-4 1,1-Dichloroethene 2.9 1.0 0.17 ug/l 156-59-2 cis-1,2-Dichloroethene 9.9 1.0 0.15 ug/l 156-60-5 trans-1,2-Dichloroethene ND 1.0 0.18 ug/l 78-87-5 1,2-Dichloropropane ND 1.0 0.33 ug/l 10061-01-5 cis-1,3-Dichloropropene ND 1.0 0.16 ug/l 10061-02-6 trans-1,3-Dichloropropene ND 1.0 0.21 ug/l 123-91-1 1,4-Dioxane ND 130 55 ug/l 100-41-4 Ethylenimine ND 1.0 0.23 ug/l 151-56-4 Ethylenimine IND 1.0 0.12 ug/l 75-09-2 Methylene chloride ND 1.0 0.12 ug/l			ND	1.0	0.11	ug/I	1 - 100 0.1
541-73-1 1,3-Dichlorobenzene ND 1.0 0.18 ug/l 106-46-7 1,4-Dichlorobenzene ND 1.0 0.21 ug/l 75-71-8 Dichlorodifluoromethane ND 2.0 0.91 ug/l 75-34-3 1,1-Dichloroethane 4.0 1.0 0.10 ug/l 107-06-2 1,2-Dichloroethane ND 1.0 0.31 ug/l 75-35-4 1,1-Dichloroethene 2.9 1.0 0.17 ug/l 156-59-2 cis-1,2-Dichloroethene 9.9 1.0 0.15 ug/l 156-60-5 trans-1,2-Dichloroethene ND 1.0 0.18 ug/l 78-87-5 1,2-Dichloropropane ND 1.0 0.33 ug/l 10061-01-5 cis-1,3-Dichloropropene ND 1.0 0.16 ug/l 10061-02-6 trans-1,3-Dichloropropene ND 1.0 0.21 ug/l 123-91-1 1,4-Dioxane ND 130 55 ug/l 100-41-4 Ethylenimine ND 1.0 0.23 ug/l 151-56-4 Ethylenimine IND 1.0 0.12 ug/l 75-09-2 Methylene chloride ND 1.0 0.12 ug/l		-		1.0	0.17		$= (0.160)^{11}$
541-73-1 1,3-Dichlorobenzene ND 1.0 0.18 ug/l 106-46-7 1,4-Dichlorobenzene ND 1.0 0.21 ug/l 75-71-8 Dichlorodifluoromethane ND 2.0 0.91 ug/l 75-34-3 1,1-Dichloroethane 4,0 1.0 0.10 ug/l 107-06-2 1,2-Dichloroethane ND 1.0 0.31 ug/l 75-35-4 1,1-Dichloroethene 2.9 1.0 0.17 ug/l 156-59-2 cis-1,2-Dichloroethene 9.9 1.0 0.15 ug/l 156-60-5 trans-1,2-Dichloroethene ND 1.0 0.18 ug/l 78-87-5 1,2-Dichloropropane ND 1.0 0.33 ug/l 10061-01-5 cis-1,3-Dichloropropene ND 1.0 0.16 ug/l 102-91-1 1,4-Dioxane ND 1.0 0.21 ug/l 102-41-4 Ethylenimine ND 1.0 0.12 ug/l 75-09-2 Methylene chloride ND 1.0 0.12 ug/l				1.0	0.14		0.10k ·/C
106-46-7 1,4-Dichlorobenzene ND 1.0 0.21 ug/l 75-71-8 Dichlorodifluoromethane ND 2.0 0.91 ug/l 75-34-3 1,1-Dichloroethane 4.0 1.0 0.10 ug/l 107-06-2 1,2-Dichloroethane ND 1.0 0.31 ug/l 75-35-4 1,1-Dichloroethene 2.9 1.0 0.17 ug/l 156-59-2 cis-1,2-Dichloroethene 9.9 1.0 0.15 ug/l 156-60-5 trans-1,2-Dichloroethene ND 1.0 0.18 ug/l 78-87-5 1,2-Dichloropropane ND 1.0 0.33 ug/l 10061-01-5 cis-1,3-Dichloropropene ND 1.0 0.16 ug/l 10061-02-6 trans-1,3-Dichloropropene ND 1.0 0.21 ug/l 123-91-1 1,4-Dioxane ND 130 55 ug/l 100-41-4 Ednylbenzene ND 1.0 0.23 ug/l 151-56-4 Ethylenimine IND 1.0 0.12 ug/l 75-09-2 Methylene chloride ND 1.0 0.12 ug/l			ND	1.0	0.18	ug/l	,
75-71-8 Dichlorodifluoromethane ND 2.0 0.91 ug/l 75-34-3 1,1-Dichloroethane 4.0 1.0 0.10 ug/l 107-06-2 1,2-Dichloroethane ND 1.0 0.31 ug/l 75-35-4 1,1-Dichloroethene 2.9 1.0 0.17 ug/l 156-59-2 cis-1,2-Dichloroethene 9.9 1.0 0.15 ug/l 156-60-5 trans-1,2-Dichloroethene ND 1.0 0.18 ug/l 78-87-5 1,2-Dichloropropane ND 1.0 0.33 ug/l 10061-01-5 cis-1,3-Dichloropropene ND 1.0 0.16 ug/l 10061-02-6 trans-1,3-Dichloropropene ND 1.0 0.21 ug/l 123-91-1 1,4-Dloxane ND 130 55 ug/l 100-41-4 Edhylbenzene ND 1.0 0.23 ug/l 151-56-4 Ethylenimine IND ug/l 75-09-2 Methylene chloride ND 1.0 0.12 ug/l				1.0	0.21	ug/l	
75-34-3				2.0	0.91	ug/l	
107-06-2 1,2-Dichloroethane ND 1.0 0.31 ug/l 75-35-4 1,1-Dichloroethene 2.9 1.0 0.17 ug/l 156-59-2 cis-1,2-Dichloroethene 9.9 1.0 0.15 ug/l 156-60-5 trans-1,2-Dichloroethene ND 1.0 0.18 ug/l 78-87-5 1,2-Dichloropropane ND 1.0 0.33 ug/l 10061-01-5 cis-1,3-Dichloropropene ND 1.0 0.16 ug/l 10061-02-6 trans-1,3-Dichloropropene ND 1.0 0.21 ug/l 123-91-1 1,4-Dloxane ND 130 55 ug/l 100-41-4 Ethylenimine ND 1.0 0.23 ug/l 151-56-4 Ethylenimine IND 1.0 0.12 ug/l 75-09-2 Methylene chloride ND 1.0 0.12 ug/l				1.0	0.10	ug/l	•
75-35-4 1,1-Dichloroethene 2.9 1.0 0.17 ug/l 156-59-2 cis-1,2-Dichloroethene 9.9 1.0 0.15 ug/l 156-60-5 trans-1,2-Dichloroethene ND 1.0 0.18 ug/l 78-87-5 1,2-Dichloropropane ND 1.0 0.33 ug/l 10061-01-5 cis-1,3-Dichloropropene ND 1.0 0.16 ug/l 10061-02-6 trans-1,3-Dichloropropene ND 1.0 0.21 ug/l 123-91-1 1,4-Dloxane ND 130 55 ug/l 100-41-4 Ethylbenzene ND 1.0 0.23 ug/l 151-56-4 Ethylenimine IND ug/l 75-09-2 Methylene chloride ND 1.0 0.12 ug/l		•		1.0	0.31	ug/l	
156-59-2 cis-1,2-Dichloroethene 9.9 1.0 0.15 ug/l 156-60-5 trans-1,2-Dichloroethene ND 1.0 0.18 ug/l 78-87-5 1,2-Dichloropropane ND 1.0 0.33 ug/l 10061-01-5 cis-1,3-Dichloropropene ND 1.0 0.16 ug/l 10061-02-6 trans-1,3-Dichloropropene ND 1.0 0.21 ug/l 123-91-1 1,4-Dloxane ND 130 55 ug/l 100-41-4 Ethylenizene ND 1.0 0.23 ug/l 151-56-4 Ethylenimine IND ug/l 75-09-2 Methylene chloride ND 1.0 0.12 ug/l			2.9	1.0	0.17	ug/l	•
156-60-5 trans-1,2-Dichloroethene ND 1.0 0.18 ug/l 78-87-5 1,2-Dichloropropane ND 1.0 0.33 ug/l 10061-01-5 cis-1,3-Dichloropropene ND 1.0 0.16 ug/l 10061-02-6 trans-1,3-Dichloropropene ND 1.0 0.21 ug/l 123-91-1 1,4-Dioxane ND 130 55 ug/l 100-41-4 Ednylbenzene ND 1.0 0.23 ug/l 151-56-4 Ethylenimine IND ug/l 75-09-2 Methylene chloride ND 1.0 0.12 ug/l			9.9	1.0	0.15	ug/l	
78-87-5 1,2-Dichloropropane ND 1.0 0.33 ug/l 10061-01-5 cis-1,3-Dichloropropene ND 1.0 0.16 ug/l 10061-02-6 trans-1,3-Dichloropropene ND 1.0 0.21 ug/l 123-91-1 1,4-Dioxane ND 130 55 ug/l 100-41-4 Ednylbenzene ND 1.0 0.23 ug/l 151-56-4 Ethylenimine IND ug/l 75-09-2 Methylene chloride ND 1.0 0.12 ug/l			ND	1.0	0.18	ug/l	
10061-01-5 cis-1,3-Dichloropropene ND 1.0 0.16 ug/l 10061-02-6 trans-1,3-Dichloropropene ND 1.0 0.21 ug/l 123-91-1 1,4-Dloxane ND 130 55 ug/l 100-41-4 Ethylbenzene ND 1.0 0.23 ug/l 151-56-4 Ethylenimine IND ug/l 75-09-2 Methylene chloride ND 1.0 0.12 ug/l		· ·	ND	1.0	0.33		
10061-02-6 trans-1,3-Dichloropropene ND 1.0 0.21 ug/l 123-91-1 1,4-Dloxane ND 130 55 ug/l 100-41-4 Ethylbenzene ND 1.0 0.23 ug/l 151-56-4 Ethylenimine IND ug/l 75-09-2 Methylene chloride ND 1.0 0.12 ug/l			ND	1.0	0.16	ug/l	
123-91-1 1,4-Dioxane ND 130 55 ug/l 100-41-4 Ethylbenzene ND 1.0 0.23 ug/l 151-56-4 Ethylenimine IND ug/l 75-09-2 Methylene chloride ND 1.0 0.12 ug/l			ND	1.0	0.21	ug/l	· ·
100-41-4 Ethylbenzene ND 1.0 0.23 ug/l 151-56-4 Ethylenimine IND ug/l 75-09-2 Methylene chloride ND 1.0 0.12 ug/l			ND	130	55	ug/I	
151-56-4 Ethylenimine IND ug/l 75-09-2 Methylene chloride ND 1.0 0.12 ug/l		- · · · · · · · · · · · · · · · · · · ·		1.0	0.23	ug/l	
75-09-2 Methylene chloride ND 1.0 0.12 ug/l				•			
			ND	1.0	0.10	ug/I	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

11:55

MANUFACTURING → 919733444876

NO.212

D11

Accutest LabLink@11:01 24-Oct-2008

Report of Analysis

Page 2 of 2

Client Sample ID: BASEMENT SUMP GRAB

Lab Sample ID: Matrix:

Method:

Project:

JA2127-2

AQ - Water

EPA 624 Monthly PVSC Permit, Fairlawn, NJ Date Sampled: 10/02/08 Date Received: 10/02/08

Percent Solids: n/a

VOA TVO List

CAS No.	Compound	Result	RL	MDL	Units	Q
127-18-4 108-88-3 71-55-6 79-00-5 79-01-6 75-69-4 75-01-4 1330-20-7	Tetrachloroethene Toluene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethene Trichlorofluoromethane Vinyl chloride Xylenes (total)	125 ND 2.5 ND 10 ND ND ND	1.0 1.0 1.0 1.0 1.0 2.0 2.0	0.58 0.20 0.11 0.15 0.45 0.44 0.16	ug/l ug/l ug/l ug/l ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run#	2 Lin	nits	
17060-07-0 2037-26-5 460-00-4	1,2-Dichloroethane-D4 (SUR) Toluene-D8 (SUR) 4-Bromofluorobenzene (SUR)	112% 100% 98%		85-	139% 120% 11 8 %	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

11:55

MANUFACTURING → 919733444876

NO.212

D12

Accutest LabLink@11:01 24-Oct-2008

Report of Analysis

Page 1 of 1

Client Sample ID: BASEMENT SUMP GRAB

Lab Sample ID: Matrix:

JA2127-2

AQ - Water

Date Sampled: 10/02/08

Date Received: 10/02/08

Percent Solids: n/a

Project:

Monthly PVSC Permit, Fairlawn, NJ

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
HEM Petroleum Hydroca	rbons < 5.2	5.2	mg/l	1	10/22/08	MG	EPA 1664A
Field Parameters			·			•	
pH (Field)	6.64		su	1	10/02/08 14:	07 RMS	SM20 4500H B

11/05/2008

11:55

MANUFACTURING \rightarrow 919733444876

NO.212

D13

Section 4

4

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

• Chain of Custody

NO.212

D03

11/05/2008 11:55

MANUFACTURING → 919733444876

SANDVIK COMPANY 1702 Nevins Road P.O. Box 428 Fair Lawn, NJ 07410-0428

GROUND WATER SEWAGE RECORDS 2008

		GAI	JUND WA			METE	RA = PVSC	SEWF	R (GALLONS)
ERIOD	DATE	SAPPER A	METERED F	METED	B(07017639)	METE	R B= STORM	DRA	IN (GALLONS)
			05000626)	MEICK	8,415,000	-	554,000	В	2,331,000
3000	4134		34,686,000 34,132,000		6,084,000	, ''	33.,,	_	
JAN.	1/31	A=	554,000	R=	2,331,000	A	554,000	В	2,331,000
-							4 440 000	В	1,507,000
			36,102,000		9,922,000		1,416,000	D	1,507,600
FEB.	2/29		34,686,000	b-	8,415,000 1,507,000		1,416,000	В	1,507,000
		A=	1,416,000	B=	1,000,1000	<u> </u>			
			39,249,000		10,843,000	4	3,147,000	В	921,000
MAR.	3/31		36,102,000		9,922,000		2 4 47 999		921,000
		A=	3,147,000	B=	921,000	A	3,147,000	В	521,000
			40,949,000		12,698,000	Α	1,700,000	8	1,855,000
APR.	4/30		39,249,000		10,843,000	=			
AFK.	4/30	A=		B=	1,855,000		1,700,000	В	1,855,000
					42 020 000	A	2,031,000	B	1,240,000
			42,980,000		13,938,000	_	2,031,000		1,240,000
MAY	5/31		40,949,000		12,698,000		2,031,000	В	1,240,000
		A=	2,031,000	B=	1,240,000	A	2,031,000		
			44,835,000	٠	15,181,000) A	1,855,000	В	1,243,000
JUNE	6/30		42,980,000		13,938,000	<u> </u>			
-	0.00	A=	1,855,000	B=	1,243,000	A	1,855,000	B	1,243,000
			15 601 000		17,009,000) A	856,000	В	1,828,000
			45,691,000	-	15,181,000	- 1	000,000		•
JULY	7/31	A=	44,835,000 856,000	R=	1,828,000		856,000	В	1,828,000
								<u>i_</u>	2,196,000
			46,143,000		19,205,000	_	452,000	0	2, 190,000
AUG.	8/31		45,691,000		17,009,000		450,000	В	2,196,000
	ļ	A=	452,000	8=	2,196,00	0 A	452,000	В	
	1	\	46,182,000		21,369,00	0 A	39,000	В	2,164,00
SEPT.	9/30		46,143,000		19,205,00	ō			
GLP II	0,00	A=	39,000		2,164,00		39,000	В	2,164,00
		<u> </u>		1	23,766,00	0 A	0	В	2,317,00
	40/04		46,182,000 46,182,000		21,449,00			-	_,-,-,,
OCT.	10/31	A=	40, 102,000		2,317,00		0	В	2,317,00
	<u> </u>	A-			2,0,00	<u> </u>			
						_ A	C	В	
NOV.	11/30							В	
	}	A=		В=		A			
	+					A		В	
DEC.	12/31						T	<u> </u>	
		A=		B=		A	(В	<u> </u>
-							40.000		47 600 DO
IYTD 1	OTAL					_ A	12,050,000	B	17,602,00

1/05/2008

11:55

MANUFACTURING → 919733444876

MACCUTE	ST.	ing.	Presh 2235	AIN Ponds Route 1 29-020	Corpor	ele V	/illag L NJ	e, B:	vildi B10	iog R			Acculest Jo			AZ127	É
Gliest Information 2 Sandylck Mrf.		Seatton	Yadilty Sandvic	inform k	ntion	V. 7.				<u>ुर्थाल</u> ः	800 T85	Cd, Cu, Pb, Hg,	Analy	ical Infor	NY4/2008 nation V824 TVO	PHC 1684	79400
y 850	-	Locatin _ Project #	Monthly Fairtswi			it .			1			NI, Zn.					·
Mr. Albert Mips and Report to: some 9: (201) 794-5106		FAX S: Collection				نبنسا	68 6 0		3ñ						ĺ		
Field ID / Point of Collection Basement Sump	10-7-08	Time L 02	Sempled Dy RS	ww.	# pr bottless 3	₹	X Head	-	X Section 1		X	Х					
24 hr Composite time: 400 to 400 date: 10- -06- 0-2-06							+										
Basement Sump	10-2-08	1407	<u>ks</u>	ww	5	ř	+								х	X	X
Grab		3 A 43	Deta De	liverable	Inform:	ation			90				Comra	erits / Riterra	nice		L. L
21 Cay Standard 14 Cays RUSH 7 Cays EMERGENCY	Approved	1 By:	NJ RODO NJ FUIL FULL C	ucad LF ellyarab	io .	000		vyter wyter m For	clut	,	HCZ, ANET 21, WC42, 2011	E		eriabilities pling SOFs	oled in according to		
24 Cay Turremound Herocopy, Sunsige	Custosy mu	to FAX	· کسیا ا			ens	rop P	1 to	lingi	Table Upi	e constant day		Dide Time	<u>.</u>	City City City City City City City City	by:	and the second
S Seriolaria	Cale York;		Received By 5	1				8	3	22	Int	ct	whoma Applica		2	<u> </u>	-4°C

JA2127: Chain of Custody Page 1 of 1 11/05/2008

11:55

MANUFACTURING → 919733444876

NO.212

DØ9

Accutest LabLink@11:01 24-Oct-2008

Report of Analysis

Page 1 of 1

Client Sample ID: BASEMENT SUMP 24HR COMPOSITE Lab Sample ID:

JA2127-1

Date Sampled: 10/02/08

AQ - Water

Date Received: 10/02/08

Monthly PVSC Permit, Fairlawn, NJ

Percent Solids: n/a

Project:

General Chemistry

Matrix:

Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
BOD, 5 Day	< 2:0	2.0	mg/l	1	10/03/08 12:15	mjc	SM20 5210B
	< 4.0	4.0	mg/l	1	10/06/08	Ri	SM20 2540D

NO.212 D01

Sandvik Coromant Manufacturing 1702 Nevins Road Fair Lawn, NJ 07410 (201) 794-5106 (201) 794-5049 (fax)

Transmittal Cover Sheet

To: PVSC

Attention: Mr. Andy Caltagirone

Date: November 5, 2008

From: Albert Mips

Subject: Monitoring Report for October

Fax Number: (973) 344-4876

Pages: 15

Comments:

This is the monitoring report for the period 10/01/2009 to 10/31/2008. This is just a precautionary measure. The hard copies have been sent. Any questions please call me at (201) 794-5106.

Regards, Albert Mips

NO.212

J02

11/05/2008

11:55

November 5, 2008

Mr. Andy Caltagirone Passaic Valley Sewage Commissioners 600 Wilson Ave. Newark, NJ 07105

Re: Monitoring report October 2008. Permit Number: 08630002

Dear Mr. Andy Caltagirone,

Please find enclosed our sewage discharge monthly monitoring reports for the period of 10/1/08 to 10/31/08, during this period there was no discharge to PVSC.

For any additional information regarding this or any other matter, I can be reached at 201-794-5106 or by E-mail at Albert. Mips@Sandvik.com

Sincerely, Albert W. Mips

pun whi

Facilities Engineering Manager